Copied to
clipboard

G = C3×C42⋊C6order 288 = 25·32

Direct product of C3 and C42⋊C6

direct product, metabelian, soluble, monomial

Aliases: C3×C42⋊C6, (C4×C12)⋊2C6, C42⋊C31C6, C421(C3×C6), C422C2⋊C32, C23.1(C3×A4), C22.3(C6×A4), (C22×C6).5A4, (C3×C42⋊C3)⋊2C2, (C3×C422C2)⋊C3, (C2×C6).11(C2×A4), SmallGroup(288,635)

Series: Derived Chief Lower central Upper central

C1C42 — C3×C42⋊C6
C1C22C42C4×C12C3×C42⋊C3 — C3×C42⋊C6
C42 — C3×C42⋊C6
C1C3

Generators and relations for C3×C42⋊C6
 G = < a,b,c,d | a3=b4=c4=d6=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=c-1, dcd-1=b-1c >

3C2
4C2
16C3
16C3
16C3
6C4
6C22
6C4
3C6
4C6
16C6
16C6
16C6
16C32
3C2×C4
3C2×C4
4A4
4A4
4A4
6C12
6C2×C6
6C12
16C3×C6
3C4⋊C4
3C22⋊C4
3C2×C12
3C2×C12
4C2×A4
4C2×A4
4C2×A4
4C3×A4
3C3×C22⋊C4
3C3×C4⋊C4
4C6×A4

Character table of C3×C42⋊C6

 class 12A2B3A3B3C3D3E3F3G3H4A4B4C6A6B6C6D6E6F6G6H6I6J12A12B12C12D12E12F
 size 134111616161616166612334416161616161666661212
ρ1111111111111111111111111111111    trivial
ρ211-11111111111-111-1-1-1-1-1-1-1-11111-1-1    linear of order 2
ρ311111ζ32ζ3ζ3ζ32ζ32ζ31111111ζ32ζ3ζ3ζ3ζ32ζ32111111    linear of order 3
ρ411-1ζ32ζ3ζ3ζ3ζ32ζ321111-1ζ3ζ32ζ6ζ65-1ζ6-1ζ65ζ65ζ6ζ3ζ3ζ32ζ32ζ6ζ65    linear of order 6
ρ5111ζ3ζ32ζ31ζ321ζ32ζ3111ζ32ζ3ζ3ζ32ζ32ζ32ζ31ζ31ζ32ζ32ζ3ζ3ζ3ζ32    linear of order 3
ρ611111ζ3ζ32ζ32ζ3ζ3ζ321111111ζ3ζ32ζ32ζ32ζ3ζ3111111    linear of order 3
ρ7111ζ32ζ3ζ321ζ31ζ3ζ32111ζ3ζ32ζ32ζ3ζ3ζ3ζ321ζ321ζ3ζ3ζ32ζ32ζ32ζ3    linear of order 3
ρ811-1ζ3ζ32ζ32ζ32ζ3ζ31111-1ζ32ζ3ζ65ζ6-1ζ65-1ζ6ζ6ζ65ζ32ζ32ζ3ζ3ζ65ζ6    linear of order 6
ρ9111ζ32ζ31ζ321ζ3ζ32ζ3111ζ3ζ32ζ32ζ3ζ321ζ3ζ321ζ3ζ3ζ3ζ32ζ32ζ32ζ3    linear of order 3
ρ1011-111ζ3ζ32ζ32ζ3ζ3ζ3211-111-1-1ζ65ζ6ζ6ζ6ζ65ζ651111-1-1    linear of order 6
ρ11111ζ3ζ321ζ31ζ32ζ3ζ32111ζ32ζ3ζ3ζ32ζ31ζ32ζ31ζ32ζ32ζ32ζ3ζ3ζ3ζ32    linear of order 3
ρ1211-1ζ32ζ31ζ321ζ3ζ32ζ311-1ζ3ζ32ζ6ζ65ζ6-1ζ65ζ6-1ζ65ζ3ζ3ζ32ζ32ζ6ζ65    linear of order 6
ρ1311-1ζ3ζ321ζ31ζ32ζ3ζ3211-1ζ32ζ3ζ65ζ6ζ65-1ζ6ζ65-1ζ6ζ32ζ32ζ3ζ3ζ65ζ6    linear of order 6
ρ14111ζ32ζ3ζ3ζ3ζ32ζ3211111ζ3ζ32ζ32ζ31ζ321ζ3ζ3ζ32ζ3ζ3ζ32ζ32ζ32ζ3    linear of order 3
ρ1511-1ζ3ζ32ζ31ζ321ζ32ζ311-1ζ32ζ3ζ65ζ6ζ6ζ6ζ65-1ζ65-1ζ32ζ32ζ3ζ3ζ65ζ6    linear of order 6
ρ16111ζ3ζ32ζ32ζ32ζ3ζ311111ζ32ζ3ζ3ζ321ζ31ζ32ζ32ζ3ζ32ζ32ζ3ζ3ζ3ζ32    linear of order 3
ρ1711-111ζ32ζ3ζ3ζ32ζ32ζ311-111-1-1ζ6ζ65ζ65ζ65ζ6ζ61111-1-1    linear of order 6
ρ1811-1ζ32ζ3ζ321ζ31ζ3ζ3211-1ζ3ζ32ζ6ζ65ζ65ζ65ζ6-1ζ6-1ζ3ζ3ζ32ζ32ζ6ζ65    linear of order 6
ρ1933-333000000-1-1133-3-3000000-1-1-1-111    orthogonal lifted from C2×A4
ρ2033333000000-1-1-13333000000-1-1-1-1-1-1    orthogonal lifted from A4
ρ2133-3-3+3-3/2-3-3-3/2000000-1-11-3-3-3/2-3+3-3/23-3-3/23+3-3/2000000ζ6ζ6ζ65ζ65ζ3ζ32    complex lifted from C6×A4
ρ2233-3-3-3-3/2-3+3-3/2000000-1-11-3+3-3/2-3-3-3/23+3-3/23-3-3/2000000ζ65ζ65ζ6ζ6ζ32ζ3    complex lifted from C6×A4
ρ23333-3-3-3/2-3+3-3/2000000-1-1-1-3+3-3/2-3-3-3/2-3-3-3/2-3+3-3/2000000ζ65ζ65ζ6ζ6ζ6ζ65    complex lifted from C3×A4
ρ24333-3+3-3/2-3-3-3/2000000-1-1-1-3-3-3/2-3+3-3/2-3+3-3/2-3-3-3/2000000ζ6ζ6ζ65ζ65ζ65ζ6    complex lifted from C3×A4
ρ256-2066000000-2i2i0-2-200000000-2i2i-2i2i00    complex lifted from C42⋊C6
ρ266-20660000002i-2i0-2-2000000002i-2i2i-2i00    complex lifted from C42⋊C6
ρ276-20-3-3-3-3+3-3000000-2i2i01--31+-30000000043ζ34ζ343ζ324ζ3200    complex faithful
ρ286-20-3+3-3-3-3-30000002i-2i01+-31--3000000004ζ3243ζ324ζ343ζ300    complex faithful
ρ296-20-3-3-3-3+3-30000002i-2i01--31+-3000000004ζ343ζ34ζ3243ζ3200    complex faithful
ρ306-20-3+3-3-3-3-3000000-2i2i01+-31--30000000043ζ324ζ3243ζ34ζ300    complex faithful

Smallest permutation representation of C3×C42⋊C6
On 48 points
Generators in S48
(1 2 3)(4 8 11)(5 9 12)(6 7 10)(13 19 29)(14 20 30)(15 21 25)(16 22 26)(17 23 27)(18 24 28)(31 37 47)(32 38 48)(33 39 43)(34 40 44)(35 41 45)(36 42 46)
(1 25 7 38)(2 15 10 48)(3 21 6 32)(4 41 12 28)(5 18 8 45)(9 24 11 35)(13 40 16 30)(14 19 44 22)(17 36 47 33)(20 29 34 26)(23 42 31 39)(27 46 37 43)
(1 47 12 14)(2 31 5 20)(3 37 9 30)(4 44 7 17)(6 27 11 40)(8 34 10 23)(13 21 43 24)(15 39 18 29)(16 32 46 35)(19 25 33 28)(22 38 36 41)(26 48 42 45)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)

G:=sub<Sym(48)| (1,2,3)(4,8,11)(5,9,12)(6,7,10)(13,19,29)(14,20,30)(15,21,25)(16,22,26)(17,23,27)(18,24,28)(31,37,47)(32,38,48)(33,39,43)(34,40,44)(35,41,45)(36,42,46), (1,25,7,38)(2,15,10,48)(3,21,6,32)(4,41,12,28)(5,18,8,45)(9,24,11,35)(13,40,16,30)(14,19,44,22)(17,36,47,33)(20,29,34,26)(23,42,31,39)(27,46,37,43), (1,47,12,14)(2,31,5,20)(3,37,9,30)(4,44,7,17)(6,27,11,40)(8,34,10,23)(13,21,43,24)(15,39,18,29)(16,32,46,35)(19,25,33,28)(22,38,36,41)(26,48,42,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)>;

G:=Group( (1,2,3)(4,8,11)(5,9,12)(6,7,10)(13,19,29)(14,20,30)(15,21,25)(16,22,26)(17,23,27)(18,24,28)(31,37,47)(32,38,48)(33,39,43)(34,40,44)(35,41,45)(36,42,46), (1,25,7,38)(2,15,10,48)(3,21,6,32)(4,41,12,28)(5,18,8,45)(9,24,11,35)(13,40,16,30)(14,19,44,22)(17,36,47,33)(20,29,34,26)(23,42,31,39)(27,46,37,43), (1,47,12,14)(2,31,5,20)(3,37,9,30)(4,44,7,17)(6,27,11,40)(8,34,10,23)(13,21,43,24)(15,39,18,29)(16,32,46,35)(19,25,33,28)(22,38,36,41)(26,48,42,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48) );

G=PermutationGroup([[(1,2,3),(4,8,11),(5,9,12),(6,7,10),(13,19,29),(14,20,30),(15,21,25),(16,22,26),(17,23,27),(18,24,28),(31,37,47),(32,38,48),(33,39,43),(34,40,44),(35,41,45),(36,42,46)], [(1,25,7,38),(2,15,10,48),(3,21,6,32),(4,41,12,28),(5,18,8,45),(9,24,11,35),(13,40,16,30),(14,19,44,22),(17,36,47,33),(20,29,34,26),(23,42,31,39),(27,46,37,43)], [(1,47,12,14),(2,31,5,20),(3,37,9,30),(4,44,7,17),(6,27,11,40),(8,34,10,23),(13,21,43,24),(15,39,18,29),(16,32,46,35),(19,25,33,28),(22,38,36,41),(26,48,42,45)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)]])

Matrix representation of C3×C42⋊C6 in GL9(𝔽13)

900000000
090000000
009000000
000100000
000010000
000001000
000000100
000000010
000000001
,
1200000000
452000000
518000000
0005501200
000000100
0008800120
000121212000
000010000
0001181111105
,
8911000000
9811000000
779000000
0001103325
0001181111105
0002010238
0005050012
000000001
0008800120
,
778000000
400000000
546000000
000100000
000121212000
000010000
0002010238
00025210118
0005501200

G:=sub<GL(9,GF(13))| [9,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[12,4,5,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,2,8,0,0,0,0,0,0,0,0,0,5,0,8,12,0,11,0,0,0,5,0,8,12,1,8,0,0,0,0,0,0,12,0,11,0,0,0,12,1,0,0,0,11,0,0,0,0,0,12,0,0,10,0,0,0,0,0,0,0,0,5],[8,9,7,0,0,0,0,0,0,9,8,7,0,0,0,0,0,0,11,11,9,0,0,0,0,0,0,0,0,0,11,11,2,5,0,8,0,0,0,0,8,0,0,0,8,0,0,0,3,11,10,5,0,0,0,0,0,3,11,2,0,0,0,0,0,0,2,10,3,0,0,12,0,0,0,5,5,8,12,1,0],[7,4,5,0,0,0,0,0,0,7,0,4,0,0,0,0,0,0,8,0,6,0,0,0,0,0,0,0,0,0,1,12,0,2,2,5,0,0,0,0,12,1,0,5,5,0,0,0,0,12,0,10,2,0,0,0,0,0,0,0,2,10,12,0,0,0,0,0,0,3,11,0,0,0,0,0,0,0,8,8,0] >;

C3×C42⋊C6 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes C_6
% in TeX

G:=Group("C3xC4^2:C6");
// GroupNames label

G:=SmallGroup(288,635);
// by ID

G=gap.SmallGroup(288,635);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,2523,514,360,6304,3476,102,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=c^-1,d*c*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C3×C42⋊C6 in TeX
Character table of C3×C42⋊C6 in TeX

׿
×
𝔽